
Bioinformatic Pipeline For Metabarcoding (OBITools And Friends)
Daniel Marquina (daniel.marquina@nrm.se / danielmarquinahz@gmail.com / @metagusano (Twitter) /
metagusano.github.io)

Greetings, be welcomed to the second part of the metabarcoding adventure: the bioinformatic processing (just when

you thought you were done with the hard part...).

 Gate 1: Installation of the software.

Let’s start easy by installing the software that we are going to be using.

1.1 OBITools. A very complete package specifically designed for eukaryotic metabarcoding pipelines. It requires
Python 2.7. It is downloaded using the script get-obitools.py (python script available here:
https://pythonhosted.org/OBITools/welcome.html, or I can share it).

$ python get-obitools.py

This will automatically download OBITools and create a directory with the latest version of OBITools. Inside there
is the executable obitools that activates the environment for the different scripts to work. This executable should be
copied (not moved) to the usr/local/bin/ directory or to a directory that is easily accesible if you are working on a
server without the permission to modify the /usr/local/bin, for example ~/bin/ directory. That way it can be activated
at any time.

1.2 ecoPCR. Part of the OBITools universe. It can be obtained here: https://git.metabarcoding.org/obitools/ecopcr/wikis/home.
It has to be decompressed and installed.

$ tar -zxvf ecopcr-*.tar.gz
$ cd ecoPCR/src/
$ make

This will generate a series of executables in the scr/ directory that can be copied to usr/local/bin/ directory or ~/bin/
directory for convenience: ecoPCR, ecofind, ecogrep.

1.3 OwiTools. Set of R scripts that complement other programs or convert file formats. Written by Dr. Owen
Wangensteen, can be accessed here: https://github.com/metabarpark/R_scripts_metabarpark. The script retrieve_BOLD.R is
an older version of the get_Reference_Database_from_BOLD.R in his github page. I prefer
retrieve_BOLD.R, but you are free to look into the updated one and adapt the pipeline accordingly. Once the
scripts are downloaded they can be copied to the usr/local/bin/ directory and converted into executables. The files
family_to_order.csv and order.complete.csv, compiled by Owen W. are also part of the package. If not
found online, I can provide them.

$ chmod +x retrieve_BOLD.R

repeat with all owi_ scripts and copy them to the to usr/local/bin/ directory or ~/bin/ directory. Don't copy
family_to_order.csv and order.complete.csv, later we will move them somewhere else.

1.4 My scripts: refine_MOTU_table and BOLD_identities. The first is a single script that I wrote to make a final
curation of the MOTU table to remove potential false MOTUs and making the table more readable. The second is an
script to sending the sequences to BOLD and obtaining the taxonomic identification. They can be accessed:
https://github.com/metagusano/metabarcoding_scripts. They are R scripts in executable form that can be copied to
usr/local/bin/ or ~/ directory.

Bioinformatic Pipeline for Metabarcoding

Daniel Marquina

	 2

1.5 SWARM. It will be used for clustering. It can be found in https://github.com/torognes/swarm.

$ git clone https://github.com/torognes/swarm.git
$ cd swarm/src/
$ make

Similarly, the executable swarm can be copied to the usr/local/bin/ or ~/bin/ directory.

1.6 VSEARCH. It will be used for chimera removal, and other steps during the pipeline. It can be found in
https://github.com/torognes/vsearch.

$ git clone https://github.com/torognes/vsearch.git
$ cd vsearch
$./autogen.sh
$./configure
$ make
$ sudo make install

This will automatically generate an executable in the usr/local/bin/ directory. If you don't have permission, omit the
sudo command. The executable can be copied to ~/bin/ directory.

1.7 USEARCH. For alternative chimera removal and strict denoising. It can be found and downloaded free in
https://www.drive5.com/usearch/download.html. It should be copied to our usr/local/bin/ or ~/bin/ directory and converted
into an executable.

$ chmod +x usearch

1.8 FastQC. It can be downloaded from https://www.bioinformatics.babraham.ac.uk/projects/download.html. The folder contains
the executable fastqc that should be copied to the usr/local/bin/ or ~/bin/ directory.

1.9 Cutadapt. Requirements: Python 2.7, as it is needed for download and installation. It will generate an executable
directly in our usr/local/bin/ or ~/bin/ directory. Documentation: https://cutadapt.readthedocs.io/en/stable/index.html.

$ pip3 install --user --upgrade cutadapt

1.10 R packages. Most packages are available at CRAN, but not all. Before installing them it is necessary to set-up
the downloading machinery. Don't do this if you don't have system permission.

$ sudo apt-get update
$ sudo apt-get install -y libssl-dev
$ sudo apt-get install -y libcurl4-openssl-dev
$ sudo apt-get install -y libxml2-dev

Then, we go to R and install the packages. It is important to follow this order, as the latter can’t be installed without
the former.

> install.packages(c("CHNOSZ", "optparse"))

if an older version of R < 3.5 do
> source("https://bioconductor.org/biocLite.R")
> biocLite()
> biocLite("Biostrings")

Bioinformatic Pipeline for Metabarcoding
Daniel Marquina

	 3

if a newer version of R > 3.5 do
> install.packages("BiocManager")
> BiocManager::install("Biostrings")

> install.packages(c("devtools", "dplyr"))
> library(devtools)
> install_github("ropensci/bold")
> install_github("cran/XML")
> install_github("tobiasgf/lulu")

And now everything is ready for some awesome science!

Bioinformatic Pipeline for Metabarcoding

Daniel Marquina

	 4

 Gate 2: Quality filtering and demultiplexing.

The beginning of this gate is going to depend on the method employed for library preparation and multiplexing and

on the system of delivering the sequences from the sequencing facility. If the library was prepared by a two-step or
one-step-with-phusion-primers PCR method in which the multiplexing tag or index is contained within the Illumina
adapter, we will follow the blue line. If the library was prepared by enzymatic ligation in which the multiplexing
tags are attached at the beginning of the primers, we will follow the red line and you have to do steps 2.1 to 2.8 for
each library file in parallel and assign a differencing marker to file names (1, 2, 3... or A, B, C...). We will assume
that we are working with COI metabarcoding targeting platyhelminths form coral reef substrates, amplified with
Leray & Geller's primers.

2.1 You will have received a lot of fastq files from the sequencing facility, twice as many as the number of samples
that you have multiplexed in your run (for each sample you will have R1 and R2). The first step is to rename all your
files with the sample name and the read number.

$ mv P13455_1001_S1_L001_R1_001.fastq turtlepoint_R1.fastq

where P13455_1001_S1_L001_R1_001.fastq is the name of the file I received from the sequencing facility and
turtlepoint is the name of my sample.

2.2 The next step is to add an attribute to all the sequences in that file indicating the pertinence to that sample. This is
necessary, as we will later merge all reads in a single file. For that we will use a loop that will contain an OBITools
command, so we have to activate the environment before running it.

$ obitools
$ for file in *_R1.fastq; do
 sample=${file#*dir/}
 sample=${sample%_R1.fastq}
 obiannotate -S sample:${sample} ${sample}_R1.fastq > ${sample}_R1.annotated.fastq
 obiannotate -S sample:${sample} ${sample}_R2.fastq > ${sample}_R2.annotated.fastq
done
$ cat COI*_R1_annotated.fastq >> COI_reefworms_R1.fastq
$ cat COI*_R2_annotated.fastq >> COI_reefworms _R2.fastq

personally, I always write loops in scripts rather than in the command line directly, but it is up to you. Don’t forget
to activate OBITools before start running the loop!

2.3 Now that all reads are together and they have been assigned to samples, we can start the quality control. For that,
we will do a FastQC analysis to both files.

$ fastqc COI_reefworms_R1.fastq

with the .html file produced we can check in an internet browser the quality of the sequences. The most important
part is the “quality per base” graph. We have to trim our sequences to preserve only good quality bases. Those
regions in which the yellow boxplot passes to the orange area of the plot should be cut away. Let’s say in our case is
290 and 270 for R1 and R2 respectively.

2.4 We trim the sequences to the desired length.

$ obicut -e 290 COI_reefworms_R1.fastq > COI_reefworms_R1.290.fastq
$ obicut -e 270 COI_reefworms_R2.fastq > COI_reefworms_R2.270.fastq

Bioinformatic Pipeline for Metabarcoding
Daniel Marquina

	 5

2.5 Now that there are only good sequences, we merge both reads from the same sequence, and we separate those
that have a good overlap (Phred score > 40) form the ones with low quality pairing.

$ illuminapairedend -r COI_reefworms_R2.270.fastq COI_reefworms_R1.290.fastq |
obiannotate -S goodali:'"Good_COI_reefworms" if score>40.00 else "Bad_COI_reefworms"'
| obisplit -t goodali

the flag -r is used when merging two files (it indicates ‘reverse’), and the file with the reads R2 should go first. The
command obisplit will generate two files named Good_COI_reefworms.fastq and
Bad_COI_reefworms.fastq. We can forget about the latter and proceed with the good one.

2.6 Our sequences are now the entire barcode. But the primers we used to amplify it have been sequenced as well, so
we should remove it or it can mess with the MOTU clustering or the taxonomic assignment later on. For that we use
cutadapt.

$ cutadapt -g GGWACWGGWTGAACWGTWTAYCCYCC -a GRTTYTTYGGICAYCCIGARGTITA -o
COI_reefworms.filtered1.fasta Good_COI_reefworms.fastq
$ cutadapt -g GGWACWGGWTGAACWGTWTAYCCYCC -a GRTTYTTYGGICAYCCIGARGTITA -o
COI_reefworms.filtered2.fasta COI_reefworms.filtered1.fasta

cutadapt will look for the forward primer at the beginning of the sequence with the flag -g, and for the reverse
primer at the end of the sequence with the flag -a and will trim them out. Note that the reverse primer has been
incorporated to the sequence in the forward direction, so we need to write the reverse complementary of the primer
we ordered for the PCR. To make sure we remove the reverse primer, we run cutadapt twice (sometimes it misses
it). The -o option specifies the output, which we have indicated that we want in fasta format, not in fastq, as we have
already done the quality filtering and we don’t care about Phred scores any more.

2.7 For the next step, we will need another attribute of the sequence: sequence length. So we have to add it to the
sequence headers.

$ obiannotate --length COI_reefworms_filtered2.fasta > COI_reefworms.noprimers.fasta

JUMP TO POINT 2.8 (BLACK) NOW, DON’T GET CONFUSED!

2.1 The first step is to rename your files with the R1 and R2 reads from whatever complicate name you receive from
the sequencing facility to something that you can identify.

$ mv P13455_1001_S1_L001_R1_001.fastq COI_reefworms_R1.fastq
$ mv P13455_1001_S1_L001_R2_001.fastq COI_reefworms_R2.fastq

where P13455_1001_S1_L001_R1_001.fastq is the name of the file I received from the sequencing.

2.2 Then we begin the quality control by running a FastQC analysis on both files.

$ fastqc COI_reefworms_R1.fastq

with the .html file produced we can check in an internet browser the quality of the sequences. The most important
part is the “quality per base” graph. We have to trim our sequences to preserve only good quality bases. Those
regions in which the yellow boxplot passes to the orange area of the plot should be cut away. Let’s say in our case is
290 and 270 for R1 and R2 respectively.

Bioinformatic Pipeline for Metabarcoding

Daniel Marquina

	 6

2.3 To trim the sequences we will use one of the OBITools scripts, so first we have to activate the environment and
then do to the trimming.

$ obitools
$ obicut -e 290 COI_reefworms_R1.fastq > COI_reefworms_R1.290.fastq
$ obicut -e 270 COI_reefworms_R2.fastq > COI_reefworms_R2.270.fastq

2.4 Now that there are only good sequences, we merge both reads from the same sequence, and we separate those
that have a good overlap (Phred score > 40) form the ones with low quality pairing.

$ illuminapairedend -r COI_reefworms_R2.270.fastq COI_reefworms_R1.290.fastq |
obiannotate -S goodali:'"Good_COI_reefworms" if score>40.00 else "Bad_COI_reefworms"'
| obisplit -t goodali

the flag -r is used when merging two files (it indicates ‘reverse’), and the file with the reads R2 should go first. The
command obisplit will generate two files named Good_COI_reefworms.fastq and
Bad_COI_reefworms.fastq. We can forget about the latter and proceed with the good one.

2.5 With the good-paired sequences, it’s time to convert the fastq into fasta, and to demultiplex the reads (assigning
each read to its correspondent sample, based on the tags used during the PCR). For that we need a tab or space
separated file in .tsv or .txt format where we specify the information regarding the sequences of the sample tags and
the primers. The file should look like this:

#exp sample tags forward_primer reverse_primer
Reef turtle_point TGCAC:CTGAC GGWACWGGWTGAACWGTWTAYCCYCC TANACYTCNGGRTGNCCRAARAAYCA
Reef tongue_reef TGCAC:TCAGC GGWACWGGWTGAACWGTWTAYCCYCC TANACYTCNGGRTGNCCRAARAAYCA
Reef lizard_island TGCAC:ATCGC GGWACWGGWTGAACWGTWTAYCCYCC TANACYTCNGGRTGNCCRAARAAYCA
Reef Empty1 TGTCA:TAATG GGWACWGGWTGAACWGTWTAYCCYCC TANACYTCNGGRTGNCCRAARAAYCA
...

where we list the sample and the associated tags in the forward and reverse primer (tagF:tagR) and the PCR primers.
Note that the deoxyinosines (I) in the reverse primer have been replaced with Ns, as obitools does not accept other
than IUPAC coding. It is a good idea to include some tag combinations that were not used during the sequencing
(e.g. last line with Empty1) to later calculate a proportion of the sequences that might have been assigned to the
wrong sample due to tag jumping or sequencing errors.

$ ngsfilter -t ngsfilter_COI.tsv --fasta-output -u unidentified.fasta
Good_COI_reefworms.fastq > COI_reefworms.noprimers.fasta

-u means that every sequence that can not be assigned to any sample, will be dumped in the unidentified.fasta
file. In COI_reefworms.noprimers.fasta we have all the sequences assigned to their samples, with the
primer and tag sequences trimmed out.

2.6 Now, if you have several libraries (let's say 3 different R1 and R2 fastq files) you have probably been doing
every step in triplicates (you should have, at least). This is the point where you can pool all your sequences together,
as now the all have in the header the information about what sample they belong to.

$ cat COI_reefworms*.noprimers.fasta >> COI_reefworms_pooled.noprimers.fasta

* means that all three files COI_reefworms_A.noprimers.fasta, COI_reefworms_B.noprimers.fasta
and COI_reefworms_C.noprimers.fasta will be incorporated to the file, and we use >> instead of > so the
information of each original file is added to the new file instead of overwriting it.

Bioinformatic Pipeline for Metabarcoding
Daniel Marquina

	 7

WE JUMP FROM POINT 2.6 TO POINT 2.8 NOW, DON’T GET CONFUSED!

2.8 The next filtering step will be removing those sequences that do not fit in our expected sequence length, as they
would probably be pseudogenes, PCR/sequencing errors, unspecific amplification or off-target organisms’ barcodes
(bacteria, etc.). This doesn’t mean that everything that passes the filter is perfect quality, biologically meaningful or
only target organisms’ barcodes.	 We can apply a low stringency margin of around 3 % for protein-coding genes, but
for ribosomal genes the margin should be wider. With Leray & Geller primers the amplicon should be 313 bp long.
It is better to check first the frequency distribution of sequence length in case anything weird is happening (too short
or too long sequences)

$ obistat -c seq_length COI_reefworms_pooled.noprimers.fasta

this will give us a table of the number of sequences for each sequence length value that we can copy or export and
plot in R, or excel or whatever.

2.9 With the interval of length we observed in the graph, we can proceed to do the filtering.

$ obigrep -p 'seq_length>303' -p 'seq_length<323' -s '^[ACGT]+$'
COI_reefworms.noprimers.fasta > COI_reefworms.length.fasta

the argument -s '^[ACGT]+$' indicates that it will only keep sequences composed of A, C, T, G, no Ns or any other
ambiguous bases, while -p indicates that a Python expression is going to follow.

2.10 We can now trust (or hope) that the sequences that remain are the ones we are interested in. Only to reduce the
computation effort, we will collapse all the sequences that are identical, but we will keep the information of how
many copies of each there are in the different samples.

$ obiuniq -m sample COI_reefworms.length.fasta > COI_reefworms.unique.fasta

the flag -m is the argument for keeping the sample information and abundance.

2.11 Also for convenience, we will shorten the sequence names, because M01320:274:000000000-
CJBFL:1:2107:12171:1380 it’s a bit tricky to manage, while COI_001 is better.

$ obiannotate --seq-rank COI_reefworms.unique.fasta | obiannotate --set-identifier
'"COI_%d"%seq_rank' > COI_reefworms.shortnames.fasta

--seq-rank will generate a new attribute in the header of the sequence based on its position in the file (1, 2, 3…), and
then, --set-identifier will rename the sequence based on that number.

2.12 To finish this gate, we transform the last file into a tab file that we will keep untouched until later. This file will
contain the sequence identifier and the read abundance in every sample.

$ obitab -o COI_reefworms.shortnames.fasta > COI_reefworms.tab

Getting this far is a success on itself, so go grab a cup of coffee and relax for five minutes. You’ve earned it!

Bioinformatic Pipeline for Metabarcoding

Daniel Marquina

	 8

 Gate 3: MOTU clustering.

At the beginning of this gate we have a file with sequences that are ‘technically’ valid. This means that they have a

good sequencing quality, the length they are supposed to have and we are keeping track of the precedence and the
abundance of each unique sequence. But that doesn’t mean that all of them are biologically valid. There are several
processes that can generate false sequences (PCR errors, sequencing errors, pairing errors, etc.), known as chimeras.
We are going to follow here the MOTU (Molecular Operational Taxonomic Unit) strategy, in which we will collapse
sequences that are similar in clusters (with a threshold that we will choose ourselves depending on the marker and
the target organisms), considering all of the sequences in a cluster as natural variants belonging to the same species.
Other metabarcoding pipelines skip this step and use the unique sequences, or Exact Sequence Variants (ESV), for
taxonomic assignment. Ideally, at the end of this gate, we will have as many MOTUs as species in our samples.
Alternative steps are in the orange line and optional steps in the brown line.

3.1 The first step of this gate is to remove the chimeras. For that we will use VSEARCH, so we need to transform the
file format to something that VSEARCH can read. We do that with one of the OwiTools scripts and text edition, and
we order the file in decreasing number of reads to help the deschimeration.

$ owi_obifasta2vsearch -i COI_reefworms.shortnames.fasta -o
COI_reefworms.vsearch.fasta
$ sed -i -e 's/[[:space:]].*;size/;size/g' COI_reefworms.vsearch.fasta
$ vsearch -sortbysize COI_reefworms.vsearch.fasta -output
COI_reefworms.vsearch.sorted.fasta -minsize 1

3.2 With the file in the correct format, we can now remove the chimeras.

$ vsearch --uchime_denovo COI_reefworms.vsearch.sorted.fasta --sizeout --nonchimeras
COI_reefworms.nonchimeras.fasta --chimeras COI_reefworms.chimeras.fasta --uchimeout
COI_reefworms.uchimeout.txt

--sizeout indicates that it will take read numbers into account when deciding whether a read is a real sequence or a
chimera. The file that matters most is COI_reefworms.nonchimeras.fasta, which has the real sequences, while
COI_reefworms.chimeras.fasta contains the chimeras, and COI_reefworms.uchimeout.txt contains the register of all
the information of the sequences analyzed, being determined chimeras or not.

3.2.1 Alternatively, a more stringent denoising and des-chimeration can be done using UNOISE3. It takes very long,
but is stricter, which can be advantageous if we are planning on doing some type of haplotyping with the data.
Otherwise, the small errors below species level left by VSEARCH can be removed during clustering or post-
clustering curation.

$ usearch -unoise3 COI_reefworms.vsearch.sorted.fasta -minsize 1 -unoise_alpha 5 -
zotus COI_reefworms.zotus.fasta -tabbedout COI_reefworms.unoise.txt

the argument -unoise_alpha will determine the stringency of the denoising. The higher it is, the more strict in
assigning errors. The default value is 2, but some metabarcoding-haplotyping studies have shown that a value of 5
gives best results. The only problem with this command is that requires lots and lots of RAM memory and that the
resulting file COI_reefworms.zotus.fasta has lost the sequence identifiers, so some edition is necessary to recover the
original sequence names (see below).

Bioinformatic Pipeline for Metabarcoding
Daniel Marquina

	 9

3.2.2 Although this could be thrown in a script, it is quite straight forward, so we can do it directly in R.

> library(Biostrings)
> all_seqs <- readDNAStringSet(COI_reefworms.vsearch.sorted.fasta)
> zotus <- readDNAStringSet(COI_reefworms.zotus.fasta)
> length(which(all_seqs %in% zotus))
> length(zotus)

at this point, if length(which(all_seqs %in% zotus)) is not the same as length(zotus) is that we messed
it up somewhere and it should be best to redo the previous step. If it is we finish this step:

> denoised <- all_seqs[c(which(all_seqs %in% zotus))]
> writeXStringSet(COI_reefworms.zotus.names.fasta)

and it will be COI_reefworms.zotus.names.fasta the file we will use in point 3.3.

3.3 The next program can deal with truncated fasta files, but the manual states that it works better with single line
fasta files, so we have to transform the ‘nonchimeras’ or the ‘zotus’ into the latter type. For that we use the following
command:

$ awk '/^>/{print (NR==1)?$0:"\n"$0;next}{printf "%s", $0}END{print ""}'
COI_reefworms.nonchimeras.fasta > COI_reefworms.nonchimeras_singleline.fasta

3.4 Now we will do one of the most important steps in the pipeline. We can customize it in several ways, but this
will affect the results greatly, so one must be careful with it and have a justification for each change.

$ swarm -d 13 -z -t 1 -o COI_reefworms_swarm13_output -s COI_reefworms_swarm13_stats -
w COI_reefworms_swarm13_seeds.fasta COI_reefworms.nonchimeras_singleline.fasta

-d is the maximum distance, expressed in number of nucleotides (NOT percentage!), for two sequences to be
considered part of the same MOTU; -z means that the input file is in vsearch format; -t is the number of cores you
are using (depending on you computational power). The _output and _stats files are very similar to each other, and
basically tell you how many MOTUs you have, and which sequences belong to each one of them. The _seeds.fasta
file has only the main sequence of each MOTU (also called centroid or head in other programs), and it will be used
for the taxonomic assignment.

If it’s your first time working with the taxonomic group or/and the marker, it is recommendable to do several swarms
with different distance levels, like 4-5 points up and down the expected barcoding gap. For instance, for this marker
(313 bp long COI) it would be from 5 to 15. Then, we plot the number of MOTUs generated against the distance and
we select the ones in which the number of MOTUs keeps more or less constant, because that will be indicating the
real barcoding gap. Let’s assume in this case that it’s in 13 (which is around 96 -97 % similarity).

3.5 Combining COI_reefworms_swarm13_output and COI_reefworms.tab (the one we created at the end of
Gate 2) we can calculate the read abundance of each MOTU in each sample, by pooling together the read numbers of
all the sequences belonging to the same MOTU, and write it in a csv file. We do this with another script from
OwiTools. This script can be edited in one of the first lines to only include MOTUs with a total count of 1 read (i.e.
MOTUs consisting on 1 sequence with only 1 read across all samples), in this line: min_reads <- 2.

$ owi_recount_swarm COI_reefworms_swarm13_output COI_reefworms.tab

Bioinformatic Pipeline for Metabarcoding

Daniel Marquina

	 10

the output of this will be a file called COI_reefworms_swarm13_output.counts.csv.

Consequently, we must select from the output fasta file from SWARM the size >= 2 centroid sequences:

$ sed -i 's/;;size=/ size=/g' COI_reefworms_swarm13_seeds.fasta
$ obigrep -p ‘size>1’ COI_reefworms_swarm13_seeds.fasta >
COI_reefworms_seeds.nosingletons.fasta

3.6 It is known that the clustering is not perfect, and we can find different MOTUs that actually belong to the same
species, getting high levels of MOTU redundancy (getting many MOTUs with the same taxonomic assignment in the
same sample) we can use LULU algorithm, that identifies redundant MOTUs based on similarity and co-occurrence.
This is particularly interesting for pseudogenes, which might have been amplified during the PCRs. So we need the
fasta with the seed sequences and the table with the abundances in each sample. Before the actual curation, we have
to prepare the data first and generate a table with the similarity values between MOTUs’ seeds.

$ sed -i 's/ size=\([0-9]\+\);//g' COI_reefworms_seeds.nosingletons.fasta

this will remove the ";size=N;" part of the identifier of the MOTU to get a cleaner file.

$ vsearch --usearch_global COI_reefworms_swarm13_seeds.fasta --db
COI_reefworms_swarm13_seeds.fasta --self --id .84 --iddef 1 --userout
COI_reefworms.match_list.txt -userfields query+target+id --maxaccepts 0 --query_cov .9
--maxhits 10

COI_reefworms.match_list.txt is the file with the similarity table that LULU will use for deciding if a MOTU is an
error or not. --id .84 indicates that 84 % is the minimum similarity value considered; --maxhits is the maximum
number of MOTUs whose similarity is recorded for each MOTU (descending value).

$ cut -d ";" -f1,A-B COI_reefworms_swarm13_output.counts.csv >
COI_reefworms.counts_LULU.txt && sed -i 's/;/\t/g' COI_reefworms.counts_LULU.txt

with this command we are transforming the output.counts.csv form the owi_recount step into a simpler table with
only id and the reads/sample, which is the only info that LULU considers. The argument -f 1, A-B, indicates to print
only the columns 1 (id) and A-B (samples). You have to substitute A and B for the first and last sample column of
your table: if you have 10 samples starting in column 15, then A=15, B=24.

3.7 With all these files ready we move to R, which can be used from the command line.

$ R
> library(lulu)
> matchlist <- read.table("COI_reefworms.match_list.txt", header=FALSE, as.is=TRUE,
stringsAsFactors=FALSE)
> otutab <- read.csv("COI_reefworms.counts_LULU.txt", sep='\t', header=TRUE,
as.is=TRUE, row.names = 1)
> curated_result <- lulu(otutab, matchlist)

the curated table will be a part of the object curated_result and can be written in a file for the last step by typing:

> write.csv(curated_result$curated_table,"COI_reefworms.LULU.curated.csv")

And we keep that file warm and comfy, until the last Gate.

Bioinformatic Pipeline for Metabarcoding
Daniel Marquina

	 11

 Gate 4: Reference database and taxonomic annotation.

It is usually said that a metabarcoding study is only as good as the reference database that is used on it. While this

is not totally true, having a good reference database is going to produce much better results, as we are going to be
able to identify our MOTUs. There are times when this will be not as important, for instance, if you are analysing the
diversity of two areas with different level of perturbation, or community differences based on an environmental
factors. But in other cases, such as surveys to detect invasive species, or diet assessment, it is of critical importance
to have as complete a database as possible. In this Gate we are going to retrieve the sequences from public
repositories (EMBL and BOLD, but it can also be done from GenBank) and transform them into a database
formatted so that OBITools can use to compare with the sequences we have obtained from our study. The specifics
of this database will change with the group and marker YOU are working with, but in this example case it will be
COI of flatworms. As an alternative (orange line), only valid for metazoan metabarcoding, you can use the script
BOLD_identities to query your sequences directly to BOLD.

4.1 First of all, we need the taxonomy information to build the database, and that will be in the NCBI taxonomic
repository that has to be downloaded and converted into a format we can use. Let’s assume we are analysing our data
in in June 2020.

$ mkdir TAXO/ && cd TAXO/
$ wget -m ftp://ftp.ncbi.nlm.nih.gov://pub/taxonomy/taxdump.tar.gz
$ mv ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz .
$ gunzip *
$ tar -xvf taxdump.tar
$ rm -rf ftp.ncbi.nlm.nih.gov/
$ rm taxdump.tar
$ cd ../
$ obitaxonomy -t ~/TAXO/ -d taxonomy_june20

obitaxonomy will convert all the files in our directory TAXO into the taxonomy database, taxonomy_june20, that
we will later use to link sequences and species information to create the reference database.

Copy the files family_to_order.csv and order.complete.csv from OwiTools in this directory, as they will
be used later on.

4.2 The sequences from EMBL can be downloaded directly using the ftp directory. The ENA (European Nucleotide
Archive) makes publicly available 4 releases every year, which is great because this way we make sure to have the
latest and most complete data out there. These releases include various types of data, of which we are interested in
the STD: the annotated sequences. There are sequences of all organisms, and it’s organized in several “taxonomic”
divisions: env (environmental), fun (fungi), hum (human), inv (invertebrates), mam (mamals excluding humans or
rodents), mus (mice), phg (phages), pln (plants), pro (prokaryonts), rod (rodents excluding mice), syn (synthetic), tgn
(transgenic), unc (uncultured), vrl (virus) and vrt (vertebrates excluding mamals). We can download it complete or
just the division we are interested in, in this case INV (flatworms). Let’s assume the latest release is the r140.

$ mkdir REF/ && cd REF/
$ wget -m ftp://ftp.ebi.ac.uk/pub/databases/embl/release/std/rel_std_inv_*_r140.dat.gz
$ mv ftp.ebi.ac.uk/pub/databases/embl/release/std/*.gz .
$ rm -rf ftp.ebi.ac.uk/
$ gunzip *
$ cat rel_std_inv*.dat >> EMBL_inv_r140.dat
$ obiconvert --embl --fasta-output EMBL_inv_r140.dat > EMBL_inv_r140.fasta

Bioinformatic Pipeline for Metabarcoding

Daniel Marquina

	 12

in this EMBL_inv_r140.fasta we have all the sequences of every gene of every species of invertebrate that has been
sequenced and uploaded to GenBank and other sources (NOT BOLD).

4.3 Downloading the sequences from BOLD can also be done from the command line. For that we will need the
script retrieve_BOLD.R. But before running it we have to set the taxa names we are interested in, and the directory
where the taxonomy dump files downloaded from NCBI are. It should look like this:

...
taxdir <- "/path/to/directory/TAXO" # Folder with NCBI taxdump
nodes <- getnodes(taxdir)
nombres <- getnames(taxdir)

taxon <- c("Polycladida", "Catenulida", "Tricladida", "Prolecitophora",
"Macrostomorpha", "Lecitoepiteliatha", "Botrioplanida", "Rhabdocoela", "Proseriata")
#change taxa
logfile <- paste("BOLD_190620","_retrieve_bold.log",sep="") #change names
...

the script will write a fasta file for each of the different taxa we have selected. I wrote all the orders of the free living
Platyhelminthes (according to BOLD’s taxonomy) instead of just "Platyhelminthes" because sometimes the BOLD
API doesn't accept high ranks. The same happens with Insects, for example.

4.4 With all the fasta files we have now from BOLD and EMBL we can build an ecoPCR database.

$ obiconvert -d taxonomy_june20 --fasta --ecopcrdb-output Reef_Worms --skip-on-error
*.fasta

the argument --fasta means that the input is in fasta format, --ecopcrdb-output is the formatted database, named
Reef_Worms, that will contain several files (.ndx, .pdx, .sdx…); some sequences will give problems, so to avoid the
whole process stop because of it, we type --skip-on-error (we will lose some sequences, but there’s nothing we can
do). In some versions of OBITools, the output format can be --ecopcrDB instead (as in OBITools tutorial), and that
can be a source of error too, make sure to type the correct command depending on you version.

4.5 The next step is to create a simulation of sequencing with the database, using ecoPCR. As said before, let's
assume we have sequenced our samples with Leray & Geller's primers:
mlCOIintF GGWACWGGWTGAACWGTWTAYCCYCC - jgHCO2198 TAIACYTCIGGRTGICCRAARAAYCA, amplicon size
of 313 bp.

$ ecoPCR -d Reef_Worms -e 3 -l 303 -L 323 GGWACWGGWTGAACWGTWTAYCCYCC
TANACYTCNGGRTGNCCRAARAAYC > Reef_worms_ref.ecopcr

the argument -e 3 allows for 3 mismatches between primer and template to produce the amplification (better more
sequneces than less), -l 303 -L 323 is the min and max length allowed of the resulting amplicon. Note that the
deoxyinosines (I) in the reverse primer have been replaced with Ns, as obitools does not accept other than IUPAC
coding.

4.6 This file has the sequences of the resulting amplicons if the species retrieved were amplified with the selected
primers. It needs to be transformed into fasta format, and the taxonomic rank above family added, so we have all the
information possible when doin the taxonomic annotation.

$ obiconvert --output-fasta Reef_worms_ref.ecopcr > Reef_worms_ref.fasta

Bioinformatic Pipeline for Metabarcoding
Daniel Marquina

	 13

$ obiannotate -d Reef_worms --with-taxon-at-rank=phylum --with-taxon-at-rank=class --
with-taxon-at-rank=subclass --with-taxon-at-rank=order Reef_worms_ref.fasta >
Reef_worms_ref_hightax.fasta

the file Reef_worms_ref_hightax.fasta is the one that will be used as reference in the next step.

4.7 The following step is one of the most critical, together with the SWARM, in the pipeline. Here we use the
reference fasta file we have just created with the centroid sequences of each MOTU to obtain the taxonomic
annotation of the latter with the ecotag algorithm.

$ ecotag -d Reef_worms -R Reef_worms_ref_hightax.fasta
COI_reefworms_seeds.nosingletons.fasta > COI_reefworms.ecotag.fasta

COI_reefworms.tag.fasta will have the taxonomic assignment (in the best cases species, but it can be genus, family,
order, etc.) in the header. It would contain more MOTUs than the COI_reefworms.LULU.counts.csv file, but there is
no problem with that, because later on we will only keep the good ones.

4.8 The tagged file COI_reefworms.ecotag.fasta will contain the taxonomic annotation, but only up to family level,
because that is the default for ecotag (that's why we required at least family level for building up the database). But
using another script from OwiTools, and with the files family_to_order.csv and order.complete.csv we can add all
the taxonomic categories to each MOTU. Before running it, we have to edit it to add the directory where the
taxonomy is:
dir_taxo <- "/path/to/directory/TAXO/" # Folder with NCBI taxdump

$ owi_add_taxonomy COI_reefworms.tag.fasta
$ sed -i -e 's/,/./g' COI_reefworms.tag.fasta.annotated.csv

this will create the file COI_reefworms.tag.fasta.annotated.csv with all the information. It is important to edit it to set
the correct directory of the taxonomy, the same as in previous scripts. The second command will change the commas
for dots in the column referring to the identity to the reference sequence.

4.1 As an alternative, you can use the scrip BOLD_identities to query the centroid sequences to BOLD. This script
uses the API system and not the bold package of R, so the querying doesn’t saturate and stop after any number of
queries. It will take the centroid sequence of each MOTU, obtain taxonomic identification, and adjust it to the most
adequate taxonomic level based on similarity thresholds.

$ BOLD_identities -f COI_reefworms_seeds.nosingletons.fasta -t
COI_reefworms_taxonomy.csv

where the flag -t indicates the name of the output table that will contain the taxonomic information and the sequence.

And we are almost there, just one more Gate and we will have out final dataset!

Bioinformatic Pipeline for Metabarcoding

Daniel Marquina

	 14

 Gate 5: Combine and refine.

Now we count with two main table files: 1) a file containing the read numbers per sample for each MOTU

generated during SWARM, COI_reefworms_swarm13_output.counts.csv, or the one corrected by LULU,
COI_reefworms.LULU.curated.csv, and 2) a file containing the taxonomic information of the centroid
sequences of each of the MOTUs, COI_reefworms.ecotag.annotated.csv (or
COI_reefworms_taxonomy.csv if you used the BOLD querying strategy in Gate 4). Combining these two will
generate a table with both the abundance in each sample and the taxonomic assignation of the MOTUs. But that table
is not perfect and final, as there are some more refinements that will improve the presentation and analysis. At the
beginning we will start with the line that included LULU curation, and the line that did NOT include it starts at 5.2
(black).

5.1 First of all, since the counts and the taxonomy tables come from two different software, the formatting is
different. We have to make them compatible, and it is just a matter of a little text editing.

$ sed -i -e 's/""/"id"/g' COI_reefworms.LULU.curated.csv
$ sed -i -e 's/"//g' COI_reefworms.LULU.curated.csv
$ sed -i -e 's/,/;/g' COI_reefworms.LULU.curated.csv

5.2 Now we combine both files with another one of the OwiTools scripts.

$ owi_combine -i COI_reefworms.ecotag.fasta.annotated.csv -a
COI_reefworms.LULU.curated.csv -o COI_reefworms.combMOTUs.csv

5.2 [Skip this point if you have done LULU curation!] To combine taxonomic and abundance information we will
use another OwiTools script.

$ owi_combine -i COI_reefworms.tag.fasta.annotated.csv -a
COI_reefworms_swarm13_output.counts.csv -o COI_reefworms.combMOTUs.csv

5.3 This script does not, however, transfer all the information of both tables. It leaves out the sequence of the
centroid, so we have to edit it in R to add in the sequence from the taxonomy table.

> table_abundances <- read.csv("COI_reefworms.combMOTUs.csv", sep=";", header=T)
> taxonomy_sequences <- read.csv("COI_reefworms.ecotag.fasta.annotated.csv", sep=";",
header=T)
> just_sequences <- taxonomy_sequences[,c("id", "sequence")]
> table_abundance_sequences <- merge(table_abundances, just_sequences, by="id")
> write.csv2(table_abundance_sequences, "COI_reefworms.combMOTUs.seqs.csv",
row.names=F)

we use here write.csv2 rather than write.csv because the former will use “ ; ” as separator and “ ,” as decimal
point. This is convenient because in later uses, R will not consider the column best_identity as numeric but as factor.
Also, it will make possible to use the next and final script.

5.4 The combined–with–sequences table still contains a lot of low abundance MOTUs product of sequencing errors
or chimeras that managed to pass the previous filters. Also, it will probably have many MOTUs with the same
species identification that can be collapsed to be considered as a single occurrence. But above all, during the
sequencing it is likely that some reads have been assigned to an erroneous sample due to tag switching (if the sample
tag was on the Illumina adapter (2-step PCR)) or PCR/sequencing errors (if the sample tag was on the PCR primer

Bioinformatic Pipeline for Metabarcoding
Daniel Marquina

	 15

(enzymatic ligation)). The way of spotting this is to have included some tag combinations that didn’t have any real
sample, or positive controls with species that we know were not present in our samples.

We count the total number of reads in the table, and the reads in the following categories:
- reads in the “empty” samples
- reads of the positive species in real samples
-reads of non-positive species in the samples unique to the positive species.
This will give us a number T, which divided by the total number of reads will give us a proportion t of reads
erroneously assigned in average to each sample. Let’s say this proportion is 0.004 (0.4 %) of the reads.
Also, we have to decide what is the minimum number of reads in total across all samples for each MOTU to be
trusted as a real occurrence (the famous singletons and doubletons). Some people use 1, 2, 5 or 10. Let’s say we want
at least 10 reads (remember than we have removed singletons in a previous step, so using the value 1 won’t do
anything).
Finally, we have to decide if we want the different MOTUs assigned to the same species as separate MOTUs or if we
want them to aggregate them in the same occurrence. Let’s say we want to aggregate them. We must be careful,
since due to reference database incompleteness, some MOTUs could be assigned to species level, but with very low
similarity to the reference sequence of that species (this happens when we have one reference sequence for a broad
taxon, the query sequences will be more similar to that sequence than to any other reference in the database). Then,
the aggregation has to consider the similarity value of the MOTU with the reference sequence.
With this in mind, we run the last script

$ refine_MOTU_table -i COI_reefworms.combMOTUs.seqs.csv -o COI_reefworms.final.csv -t
0.004 -r 10 -a yes -s 0.96

the flag -i indicates input table, -c output table, -t is the proportion of mistagged reads, -r the minimum
number of reads for trusting a MOTU and -a yes indicates that we want to aggregate same-species-determination
MOTUs, and -s that this aggregation will be done only for those MOTUs that have a similarity value of at least 96
% with the assigned reference species. For the default values check https://github.com/metagusano/metabarcoding_scripts.

And that is all!! You have now your dataset ready for whatever analysis we want to do with it. Congratulations!!!

